работа по перемещению проводника и контура с током в магнитном поле

26)Работа, совершаемая при перемещении тока в магнитном поле.

Допустим, что провод с током может свободно перемещаться во внешнем магнитном поле. Это можно осуществить с помощью скользящих контактов между концами провода и остальными участками замкнутой цепи (рис. 92). Внешнее поле будем предполагать однородным и перпендикулярным к плоскости контура. При указанных на рисунке направлениях тока и поля сила будет направлена вправо и равна f = iBl где l длина перемещающегося участка тока. На пути ds эта сила совершит над проводником работу

dA = fdS = iBldS

Произведение lds равно заштрихованной площади (рис. 92), a BldS потоку магнитной индукции dФ через эту площадку. Поэтому можно написать, что

dA = idФ                                                                  (49.1)

где dФ поток магнитной индукции, пересекаемый проводником при его движении.

Полученный нами результат легко обобщить на случай неоднородного поля. Для этого нужно разбить проводник на участки dl и сложить элементарные работы, совершаемые над

Рис. 92.

каждым участком (в пределах каждой малой площадки dlds магнитную индукцию можно считать постоянной).

Если вектор В образует с нормалью к контуру угол α, отличный от нуля, направление силы составит с направлением перемещения также угол α (f перпендикулярна к В) и

dA = f cosα ds = iBnl ds,

где Bn = В cosα составляющая вектора В по направлению нормали к площадке lds. Произведение Bnlds есть dФ поток, пересекаемый проводником. Таким образом и в этом случае мы приходим к формуле (49.1).

Заметим, что работа (49.1) совершается не за счет магнитного поля (сила Лоренца работы над зарядами не совершает), а за счет источника, поддерживающего ток в контуре.

Далее будет показано, что при изменениях потока магнитной индукции, пронизывающего контур, в этом контуре возникает э. д. с. индукции . Следовательно, в этом случае источник тока, кроме работы, затрачиваемой на выделение ленц джоулева тепла, должен совершать дополнительную работу против э. д. с. индукции, определяемую выражением

которое совпадает с (49.1).

Найдем работу, совершаемую над замкнутым контуром с током при его перемещении в магнитном поле. Вначале предположим, что контур, перемещаясь, остается все время в одной плоскости (рис. 93; вектор В направлен за чертеж). Силы, приложенные к участку контура 12, образуют с направлением перемещения острые углы. Следовательно, совершаемая ими работа А1 положительна. Согласно формуле (49.1 dA = idФ) эта работа пропорциональна силе тока в

Рис. 93

контуре i и пересеченному участком 12 потоку магнитной индукции. Участок 12 пересекает при своем движении поток Ф0 через заштрихованную поверхность и поток Фк, пронизывающий контур в его конечном положении.

Таким образом.

A1 = i(Ф0 + Фк)

Силы, действующиена участок контура 21, образуют с направлением перемещения тупые углы. Поэтому совершаемая ими работа А2 отрицательна.

Абсолютная величина ее пропорциональна потоку, пересекаемому участком 21, который слагается из Ф0 и Фн потока, пронизывающего контур в начальном положении. Следовательно,

A2 = i(Ф0 + Фн).

Работа, совершаемая над всем контуром, равна

А=А1 + А2 = i(Ф0 + Фк) i(Ф0 + Фн) = i(Фк Фн)

Разность магнитного потока через контур в конце перемещения Фк и потока в начале Фн дает приращение потока через контур ΔФ. Таким образом,

А = i ΔФ                                                                  (49.2)

При выводе формулы (49.2) мы сделали определенные предположения о характере движения контура. Можно показать, что эта формула остается справедливой при любом движении контура в произвольном магнитном поле. В частности, при повороте контура в однородном поле из положения, в котором векторы рm и В направлены в противоположные стороны, в положение, при котором эти векторы совпадают по направлению, силы поля совершают над контуром работу

A=2iSB

н = BS, вектор В и положительная нормаль имеют противоположные направления, вследствие чего Фн отрицателен; Фк = BS). Учитывая, что iS = рm магнитному моменту контура, получаем

А = 2 pmВ.

Тот же результат получается с помощью выражения (48.6 W = pmВ) для энергии контура в магнитном поле:

А = Wн Wк = pmВ (pmВ) = 2 pmВ.


Hosted by uCoz